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ABSTRACT
We usc the Connectionist Normalized Local Splint (CNLS) network to learn the dynamics
of the Mackey-Glass time-delay differential quation, for the case ~ = 30. Wc show the

. optimum network operating mode and determine the accuracy and robustness of predictions.
Wc obtain predictions of varyin accuracy using some 2-

I’!
120minutes of execunon time on

a SUn SPARC-I workstation. C U-net is capable of very good performance in predicting
the Mackey-Glass time series,

Introduction

The Connectionist NcnmaliA Local Spline (CNU) nctwork~l combines a number
of appealing features to yield a capable, versatile adaptive-computing network. The net
features normalized radial basis functions, a linem gradient term, and simple, m id solution

xof the trairtin al orithm, plus a variety of optional capabilities including K man Noise
Filtering.’~z +%8e NLS network has been successfully applied to a number of fitting, pre-
diction, and control test exam les, including a preliminary test of the net’s ability to predict
the Mackey-Glass quation.’v r

Tim Mackey-Glass (M-G) quation’~s is a time-delay ordinary differential equation that
displays well-understood chaotic behavior with dimensionality dependent upon the chosen
value of the delay ararneter.’~’ The time series gencratd by the M-G quation has been

rused as a test bed or a number or new adaptive computing techniques: a local linear (or
quadratic) approximation mcthod:y” a bacic-prop~gation neural nctwoiit,’@ and at least two
radial basis function approaches.ru7’8 In this work, we have

r
rformed extensive studies on

the usc of the CNLS-net to model and predict the Mackey - lass time series,

The CNLS-Network Architecture

The Connectionist Nonlinear Local Spline Network (CNLS-net) was developed as tin
extension of revious ada tive network cxperience,r~a’’u’o A natural evolution is to modify

!radial basis unction (RB6 nets in a manner that improves i’,terpoliltion and reduces the
amount of training necessary for accurate learning,r~l) 1CNLS-net architcctl. e hus a single
hidden layer and starts from the identity

xy=lg(%(~)g(i) = ())
t, p,(i)

Here, as in the RBF network. ~),(5) is a loealiztd functi(,n of F about som~ ~,, Hcncc, ,i[~). . . . .
on the :ight of Eq, 1 cut be approximated by its Taylor expansion

. () (i)
d(i) = x~=l[f, + (i- i,) (f)];:~”,

-.)P)(r)

titmutF,, k h;ivc “tticn,
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for an approximation to 9(:). This ntf differs horn the RBF net in two ways: (1) the use of
basis-fum tion riormdizatk and (2) the addition of a linear term, (7 - Z,) ~. The use of a
normalization term was suggested but not pursued by Moody and Darken.r~7 The addition
of these two terms is responsible for the reduction in the amount of training data needed to
obtain reasonable approximations. AS in the case with radial basis functions, the training
of f, and ~ is Line&”and hence very fast.

The Mackey-Glass Equation

l%e Mackey-Glass (M-G) equation was first advanced as a modeI of white blood cell
production.’@ It is a time-delay differential quation, namely

dz az(t - r)

z = [1+ =c(~ _fi -Wf),
(3)

where the constants are often (and in this work) taken to be a = 0.2,6 = O1, and c = 10.
The behavior of the M-G quation as a function of the delay parameter r has been studied
extensively and is reported by J. D. Farmer in Ref. ry4. At r = 30, the value used for
all of the studies repotted here, the M-G

%
uation’s attractor has an information dimension

of 3.6.’rn4Figure 1 shows a plot of the M- quation with r = 30, sli$htly renormalized to
limit its range approximately to the interval (0,1). The standard deviation of the function so
normalized is 0.24. In the results presented below, we use as a performance indicator, the
“Error Index;’ defined as the root mean squared fittin or prediction error (RMSE) divided

Eby the standml &viation. Whh this definition of the rror Index, a constant fit through the
mean value of the function leads to a value of 1.0.

Initial Choices for Embedding, Data ads, and Architecture

The starting place for this work was determined in large measure by the desire to
compare CNLS-net’s performance with that of the back propagation net used b) Lapedes.4
Thus, we initially chose the embedding used in previous works”v~-7: the traimng and test
patterns were composed of 6 inputs, spaced a[ ume intervals of 6 time units each, plus a
test ou ut, the point 6 time units after the hwt entry of the input sequence. Later, wc found

%that em dding is a very sensitive matter, and performed more detaded studies of !he issue.
The training and test files consisted of 1000-5000 points at fixed time spacing (uswdly,

Atd.,a= i). The training and test files were non-overlap ing time sequences, with the test
1file usually continuing the series begun in the training le. Except where noted, we used

500 training patterns, and we always used 500 test patterns, as did Lapedes,”@ The training
patterns were selected at random and the test patterns sequentially, Also, the selected
training patterns were held fixed for the entire training period, but were usually “tumbled,”
i.e., presented in random., varying squcnces for successive training epochs.

The CNLS-net architecture chosen initially used 6 input nodes, 28 hidden nodes (having
7 adjustable weights each), and one output node. This iclds bout 2(]0 weights, fewer

ithan Lapedes’ reported back- ropagatim net calculation: c used two hidden layers of 1(t
nodes each, giving about 54(f weights, total,’@ Our initial architecture yielded a network
that could be trained in about I --6 minutes and tested in about I minute (at ZI itcrati.ms
into the future), which made multiparamctcr optimization fctisiblc,

optimizing CNLS=hlet’s P&rameters

Wc ~rformed an extensive optimization of the adjustable parameters of CNL.S-net:
the learning rate, the width of the basis tunctkms, and the discrcct parameters governing
embedding and network size, Wc also devised two specific tests of versatility and robus(ncss.

~N1.S-net has two cont~nuous]y-adjust~blc parrmctcrs, The Icarning rate shows a hrtxd
optimum, and learning behavior showed some regions of instability. Wc found u br(~iid
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ran e of acceptable performance.
!

Generally, hi$her learning mtes led to faster training,
wit increased sus -: .)tability to instability. The width of the ba~is functions showed a broad
optimum, as well. The optimum width appears to be related to the characteristic structures
of the function being fit, under the chosen embedding.

The embedding structure is determined by the number of inputs to the network and
the time-separation between each input. Results of the two-dimensional embedding study
show !hat there is a lot of “structure.” Small changes in the embedding integers lead to
prediction erTors that differ by a factor of 2X or more. This is an important issue that
needs to be understood better. We can s-.rnmarize the embedding results by noting that
most of the “successful” embedding have At,amp in the range of 30-45. We stlspect this is
related to the choice of ~ = 30 as the Mackey-Glass delay parameter. The parameter r sets
a “coherence timescale,” and embedding for which At,a~P differs greatly fkom this time
intexva.1arc either supplying the network with too little or too much information,

An example of the M-G time series and CNLS-net’s fit is shown in Fig. 1. The plot
of Fig. 2 shows the net’s training and prediction accuracy SS a function of training epoch.
The net’s prediction accuracy shows a broad optimum, but the net can be either over- of
under-trained. We also found that trainability and prediction accuracy were influenced by
the random initial choice of the basis function centers. Some of this sensitivity may be
exacerbated by marginal stability of the learning algorithm, while some of the variation is
due to the small numbers of basis functions used and the statistical effects of redistributing
them.

Rest Results

Our best results are compared with Lapedcs’ successful prediction in Fig. 3. The plot
shows three sets of CNLS-net predictions, made ‘withhidden layer sizes of 28,56, and 1la
nodes.

The Mackey-Glass, r = 30 calculation of Lapedes and Farbet+ was trained for about
60 minutes on a Way XMP with vectorized coding. Our calculations were performed using
CNLSTOOL, written in the C language, and executed on a Sun SPARC.1 workstation, We
estimate, without detaile~ specific code measurements, that a speed conversion factor of
about 40x is probably about ri~ht between the two computers, Thus, our longest run,
with predictive accuracy cxcedmg that of La@es’ back propagation network, and with
its tmining time of 2 hours, represents about a factcr of 20x im~rovemcnt in computing
resource requirement. Our faster runs, which of course are considerably less accurate in
Ion er-time predictions, showed an additional factor of 20- 60x spe-edup, thus requiring

ffairy modest computing rescmeso

Versatility and Robustness

General concepts of versatility and robusmess for numerical algorithms exist. For the
purposes of this section, we qualitatively define “versatility” as the extent of the domain
over which the network achieves “tiear-optimum” accuracy. W define “robustness” as the
level of performance flucturttitms, e,g,, fluctuations in prediction accuracy, We devised t-AW
ways of testing the versatility and robustness of the network: (1) changing die sampling
time interval in the trainin and test files and (2) changing the time deiay aramcter in the
Mackey-Glass quation, l% Eese tests can be ma& mom or less sensitive y adjusting the
continuous parameter excursions to match the vmatility of th~ network being tested,

Here, we discuss lhe first test, varying the time spacing of data points in the trainin~
and test files, This tes[ provides a continuous handle on the rnutching of effective featurr
size or “wavelength” of the function tr be fit ,wd the network basis funchons, Figure 4
shows the results for three diffwent network si?.rs. For a fixed set of network parameters,
but retraining the net for each At4a,d, wc find !htit varititions of order 10% in point spacing
significantly affec[ the ability of the network to ob:~in pmiictivc fits. Incrrtising the nctwt)rk



size gradually improves the net’s versatility and robustness, both on this test and in our other,
related calculations.

Conclusicms

CNLS-net has proveri able to accurately predict the behavior of the Mackey-Glass
equation. We have obtained predictions that match the accuracy of previous work,’vsb while
requiring about 20x lnwer computational effOrt.’YcData requirements are comparable witi
those of a back propagation network@ and much less than those of unnormalized radial
basis function nets. r$’7.Overall, CNLS-net’s use of normalized, localized basis functions
with linearized corremon terms appears to be a successful approach. Qualitatively, in this
low-dimensional space, CNLS-net behaves in ways that are roughly intetwwdiate between
typical back propagation (BP) networks and rd.ial basis function (RBF) nets, CNLS-net
learns much faster t.lm a BP net, out becomes more readily confused in cases of high
dimensionality or with excess data to analyze. CNLS-net requires less training data than
RBF nets. Accuracy generaily improves with larger networks, larger training sei~, and
grtater training times. Versatility and robustness of the net improve somewhat with network
size.
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Fig. 1. The Mackc -Glass time series (solid line) and the predictions (points) of CNLS-net
with 28 hidden & s, for 500 test points. ‘I%enet was K~nCd for 40 epochs and tested at
21 iterations or AtP,,~= 126.
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